Gap-filling of meteorological data sets

2. Basic gap-filling techniques

3. ERA5

4. Gap-filling with ERA5

5. Best gap-filling technique + outlook

Definition of a gap

Can be expressed in:

- Number of missing values
- Time

Definition of a gap

Origin of a gap

Representation of a gap

Missing timestamp

Datum	Tijd (UTC)	Temperatuur	
2022-09-01	0:00:00	18.8	
2022-09-01	0:05:00	18.8	
2022-09-01	0:10:00	18.8	
2022-09-01	0:15:00	18.7	
2022-09-01	0:20:00	18.7	
2022-09-01	0:25:00	18.7	
2022-09-01	0:30:00	18.7	
2022-09-01	0:35:00	18.6	
2022-09-01	0:40:00	18.6	
2022-09-01	0:45:00	18.6	
2022-09-01	0:50:00	18.5	
2022-09-01	0:55:00	18.4	
2022-09-01	5:00:00	15.2	
2022-09-01	5:05:00	15.1	
2022-09-01	5:10:00	15	
2022-09-01	5:15:00	14.9	

NaN-value

Datum	Tijd (UTC)	Temperatuur	Vochtigheid
2022-09-01	0:00:00	18.8	65
2022-09-01	0:05:00	18.8	65
2022-09-01	0:10:00	18.8	65
2022-09-01	0:15:00	18.7	65
2022-09-01	0:20:00	18.7	65
2022-09-01	0:25:00	18.7	65
2022-09-01	0:30:00	18.7	65
2022-09-01	0:35:00	18.6	65
2022-09-01	0:40:00		65
2022-09-01	0:45:00		65
2022-09-01	0:50:00		65
2022-09-01	0:55:00		65
2022-09-01	1:00:00		65
2022-09-01	1:05:00	18.3	66
2022-09-01	1:10:00	18.2	66
2022-09-01	1:15:00	18.1	66
2022-09-01	1:20:00	18	66
2022-09-01	1:25:00	18	65

Problem of a gap

- Occurrence of gaps can cause difficulties for analysis:
 - Calculate average: bias can occur
 - Prevent calculation of certain quantity
 - Use data for numerical model
- UHI-effect
 - Urban and rural needed
 - Use same time period

Temporal

- Polynomial interpolation
- Diurnal interpolation
- Marginal Distribution Sampling

Spatial

- Inverse-distance weighting
- Thin-plate splines
- Kriging
- Multiple regressions

• ...

Spatiotemporal

Empirical Orthogonal Functions

• ...

Stations
$$A = \begin{bmatrix} T_{11} & \dots & T_{1s} \\ \vdots & \ddots & \vdots \\ T_{t1} & \dots & T_{ts} \end{bmatrix}$$
 Time

What is ERA5?

- Created by ECMWF
- Complete
- Homogeneous
 - Hourly
 - Grid (0.25° x 0.25°)
- Bias present

ECMWF, https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-reanalysis

What is ERA5?

- Created by ECMWF
- Complete
- Homogeneous
 - Hourly
 - Grid (0.25°)
- Bias present
 - Especially for urban locations!

- Observations vs ERA5
- 2 errors:

$$MBE = \sum_{t=1}^{N} \frac{\text{ERA5}_t - \text{OBS}_t}{N}$$

$$MSE = \sum_{t=1}^{N} \frac{(\text{ERA5}_t - \text{OBS}_t)^2}{N}$$

- Bias depends on:
 - Hour
 - Season
 - Daily temperature range

- Observations vs ERA5
- 2 errors:

$$MBE = \sum_{t=1}^{N} \frac{\text{ERA5}_t - \text{OBS}_t}{N}$$

$$MSE = \sum_{t=1}^{N} \frac{(\text{ERA5}_t - \text{OBS}_t)^2}{N}$$

- Bias depends on:
 - Hour
 - Season
 - Daily temperature range

- Observations vs ERA5
- 2 errors:

$$MBE = \sum_{t=1}^{N} \frac{\text{ERA5}_t - \text{OBS}_t}{N}$$

$$MSE = \sum_{t=1}^{N} \frac{(\text{ERA5}_t - \text{OBS}_t)^2}{N}$$

- Bias depends on:
 - Hour
 - Season
 - Daily temperature range

- Observations vs ERA5
- 2 errors:

$$MBE = \sum_{t=1}^{N} \frac{\text{ERA5}_t - \text{OBS}_t}{N}$$

$$MSE = \sum_{t=1}^{N} \frac{(\text{ERA5}_t - \text{OBS}_t)^2}{N}$$

- Bias depends on:
 - Hour
 - Season
 - Daily temperature range

Different techniques

- 1. Original ERA5
- 2. Debiased ERA5: mean bias

Different techniques

Different techniques

1. Original ERA5

2. Debiased ERA5: mean bias

Other:

- Debiased ERA5: linear regression
- Debiased ERA5: machine learning

• • •

Performance evaluation

RURAL

URBAN

5. Best gap-filling technique + outlook

Best gap-filling technique depends on:

- Available observations
- Characteristics of data
 - Urban vs rural
- Characteristics of the gap
 - Gap length

During the exercise:

- Selection of gap-filling techniques:
 - 1. Linear interpolation
 - 2. Debiased ERA5: mean bias
 - 3. Hybrid (mix of previous two)
- Best gap-filling technique for small/large gaps?